Anaerobic degradation of toluene and xylene by aquifer microorganisms under sulfate-reducing conditions.

نویسندگان

  • E A Edwards
  • L E Wills
  • M Reinhard
  • D Grbić-Galić
چکیده

Toluene and the three isomers of xylene were completely mineralized to CO2 and biomass by aquifer-derived microorganisms under strictly anaerobic conditions. The source of the inoculum was gasoline-contaminated sediment from Seal Beach, Calif. Evidence confirming that sulfate was the terminal electron acceptor is presented. Benzene and ethylbenzene were not degraded under the experimental conditions used. Successive transfers of the mixed cultures that were enriched from aquifer sediments retained the ability to degrade toluene and xylenes. Greater than 90% of 14C-labeled toluene or 14C-labeled o-xylene was mineralized to 14CO2. The doubling time for the culture grown on toluene or m-xylene was about 20 days, and the cell yield was about 0.1 to 0.14 g of cells (dry weight) per g of substrate. The accumulation of sulfide in the cultures as a result of sulfate reduction appeared to inhibit degradation of aromatic hydrocarbons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anaerobic degradation of toluene and o-xylene by a methanogenic consortium.

Toluene and o-xylene were completely mineralized to stoichiometric amounts of carbon dioxide, methane, and biomass by aquifer-derived microorganisms under strictly anaerobic conditions. The source of the inoculum was creosote-contaminated sediment from Pensacola, Fla. The adaptation periods before the onset of degradation were long (100 to 120 days for toluene degradation and 200 to 255 days fo...

متن کامل

Microbial aspects of anaerobic BTEX degradation.

Combined with conventional methods, developments in both geochemical (delineation of redox processes) and molecular microbial methods (analysis of 16S rDNA genes and functional genes) have allowed us to study in details microorganisms and genes involved in the anaerobic degradation of benzene, toluene, ethylbenzene and xylene (BTEX) under specific redox conditions. This review summarizes recent...

متن کامل

Anaerobic degradation of alkylated benzenes in denitrifying laboratory aquifer columns.

Toluene and m-xylene were rapidly mineralized in an anaerobic laboratory aquifer column operated under continuous-flow conditions with nitrate as an electron acceptor. The oxidation of toluene and m-xylene was coupled with the reduction of nitrate, and mineralization was confirmed by trapping 14CO2 evolved from 14C-ring-labeled substrates. Substrate degradation also took place when nitrous oxid...

متن کامل

Enhanced anaerobic biodegradation of benzene-toluene-ethylbenzene-xylene-ethanol mixtures in bioaugmented aquifer columns.

Methanogenic flowthrough aquifer columns were used to investigate the potential of bioaugmentation to enhance anaerobic benzene-toluene-ethylbenzene-xylene (BTEX) degradation in groundwater contaminated with ethanol-blended gasoline. Two different methanogenic consortia (enriched with benzene or toluene and o-xylene) were used as inocula. Toluene was the only hydrocarbon degraded within 3 years...

متن کامل

Isolation and Characterization of Novel Sulfate-Reducing Bacterium Capable of Anaerobic Degradation of p-Xylene

A novel strain of p-xylene-degrading sulfate reducer was isolated in pure culture. Strain PP31 was obtained from a p-xylene-degrading enrichment culture established from polluted marine sediment. Analyses of the 16S rRNA gene and two functional genes involved in sulfate respiration and anaerobic degradation of aromatic compounds revealed that the isolate was closely related to members of the ge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 58 3  شماره 

صفحات  -

تاریخ انتشار 1992